

Logic Gates and Java

By: Ethan J. Nephew

Basic Logic Gates and Java

P a g e 2 | 10

Introduction

The purpose of this document is to examine logic gates to a non-superficial depth and to explore how
they manifest within the Java language. There are seven basic logic gates: AND, OR, NAND, NOR, NOT,
XNOR, and XOR. The AND, OR, and NOT operators are typically the most familiar or prolific within Java
programming.

Logic Gates With Operators

The OR gate, figure 1, only evaluates to 0 when all inputs are 0. If any of the
inputs are a 1, then the output evaluates to a 1. An OR gate is appropriately
applied when it is necessary to check for any degree of truth. Java operator for
OR is ||. For numerical evaluation a single | is used.

• 1 || 1 = 1

• 1 || 0 = 1

• 0 || 0 = 0

• 0 || 1 = 1

The AND gate, figure 2, only evaluates to 1 if all the inputs are 1. AND is a check
that only passes if all inputs are true or 1. This gate can be viewed as a concrete
check. It only resolves to true or 1 when all items being compared are true or 1.
The Java operator for AND is &&. For numerical evaluation a single & is used.

• 1 && 1 = 1

• 1 && 0 = 0

• 0 && 0 = 0

• 0 && 1 = 0

The NOT gate, figure 3, evaluates to the opposite of whatever is provided. If true,
then false. If false, then true. If 1, then 0. If 0, then 1. Often, the NOT gate is used
as a quick check to validate a piece of data. It is typical to see NOT added to a
Boolean expression. The Java operator for NOT is !. For numerical evaluation ~ is
used.

• !1 = 0

• !0 = 1

The XOR gate, figure 4, checks for a divergence among the comparators. 1 is only
returned when the values being compared are different from one another. The
Java operator for XOR is ^.

• 1 ^ 1 = 0

• 1 ^ 0 = 1

• 0 ^ 0 = 0

• 0 ^ 1 = 1

Figure 2 AND will only resolve to
one if all inputs are one.

Figure 3 NOT resolves to the
opposite of whatever is provided
to it.

Figure 1 If one is provided as
any of the inputs to an OR gate,
then it will resolve to one.

Figure 4 XOR is a defined
operator in Java. It returns 1
only when there is a divergence
in its inputs.

Basic Logic Gates and Java

P a g e 3 | 10

Logic Gates Without Operators

The NOR gate is the inverse of the OR gate. Rather than returning 1 for any equation
where 1 is an input, the NOR gate will only return 1 if both inputs are 0.

• 1 NOR 1 = 0

• 1 NOR 0 = 0

• 0 NOR 0 = 1

• 0 NOR 1 = 0

The NAND gate can be considered the opposite of the AND gate. Where the AND gate
only returns 1 when both inputs are 1, the NAND gate only returns 0 when both inputs
are 1.

• 1 NAND 1 = 0

• 1 NAND 0 = 1

• 0 NAND 0 = 1

• 0 NAND 1 = 1

The XNOR gate can be considered the opposite of the XOR gate. Where the XOR gate
would return a 1, the XNOR gate will return a 0. Where the XOR gate would return a 0,
the XNOR gate will return a 1.

• 1 XNOR 1 = 1

• 1 XNOR 0 = 0

• 0 XNOR 0 = 0

• 0 XNOR 1 = 1

Figure 6 The NAND
gate can be viewed as
the inverse output of
an AND gate.

Figure 5 The NOR
gate only returns 1 if
all items being
compared are 0.

Figure 7 The XNOR
gate is the inverse of
the XOR gate.

Basic Logic Gates and Java

P a g e 4 | 10

Java Booleans and Logic Gates

Figure 8 This is an example in Java of how AND can be used.

Figure 9 This is an example in Java of how OR can be used.

Figure 10 This is an example in Java of how NOT can be used.

Figure 11 This is an example, in Java, that shows the behavior of the XOR operator as specified above in Figure 6.

Basic Logic Gates and Java

P a g e 5 | 10

Figure 12 NAND does not have an operator in Java, but it can be represented by using !(a && b).

Figure 13 NOR does not have an operator in Java, but it can be represented by using (!a && !b).

Figure 14 XNOR does not have an operator in Java, but it can be represented by using !(a ^ b).

Basic Logic Gates and Java

P a g e 6 | 10

Logic Gates and Numbers

In Java, logic gates are often used in a Boolean context, however, they can be used in numbers too. They

do not share the same syntax as the Boolean checks, but they are recognizable.

AND, &, and &&

Instead of using the &&

operator, with numbers it is

necessary to use the &

operator. This operator will

check numbers and return a

number that is a result of the

operation.

Figure 16 This is how AND can be applied to a number. Why does this print 8?

The result of 40 & 10 is 8? At first glance, this seems like a strange output. It appears strange because

this is the resulting number that is calculated when applying the AND gate to the decimal numbers in

binary.

OR, |, and ||

OR can be used with numbers, in much the same way as AND is. Rather than using the || operator,

instead, the | operator is used. Just like the & operator the | operator compares the inputs in binary and

returns the result in decimal. At this point, it should be possible to predict what 40 | 10 is.

Figure 17 The operation checks
each number in binary against each
other. In the AND gate, 1 is only
returned when both inputs are 1. In
this case, both inputs are only 1 on
the 8 in binary. Therefore, the
decimal 8 is the result.

Figure 18 The OR operation
compares each decimal number
in binary. The OR logic will only
return 0 if both inputs are 0.

Figure 15 It can be observed that the IDE shows an error when applying the &&
operator on numbers. This occurs when attempting to apply the || operator on
numbers too, because && and || are Boolean operators in Java. For comparing
numbers use & or |.

Basic Logic Gates and Java

P a g e 7 | 10

NOT, !, and ~

NOT is a little more complicated because it uses the 2’s complements. This is similar to regular binary

conversions; however, negative numbers are accounted for. In a 2’s complement, the furthest left

binary is meant to signify a negative number. All the binary columns to the right still represent positives.

The negative binary is then calculated by performing addition.

When the NOT operation begins, the binary comparison goes one column beyond the provided number.

This results in the sign of the number (positive or negative) being flipped. So, when a positive number is

provided in a NOT calculation, the result will be negative. When a negative number is provided in a NOT

calculation, the result will be positive. Careful examination of figure 19 should provide sufficient

information to understand negative calculations in binary.

 The calculation begins with the provided number in

binary, 6, is 1 0 1. To flip the sign, it then goes one

beyond, so it is comparing 0 1 1 0. After that, it flips each

number. 0 1 1 0 becomes 1 0 0 1, then the far-left binary

is applied as a negative. Therefore, the resulting

calculation is -8 + 0 + 0 + 1 = -7. At first glance, it does

seem a little confusing, but understanding how negative

numbers in binary are represented clears up the

confusion.

For conducting simple NOT calculations the formula to

the left can be used. The branches present an input that

is positively signed and/or an input that is negatively

signed.

Figure 19 In the Negative table, observe how the calculations are the simple result of adding up all the number
columns that contain a 1.

Figure 20 This is the result of the NOT calculation.
Review Figure 19 for the red row.

~(+/-)X
-X X(-1)+1

+X X(-1)-1

Basic Logic Gates and Java

P a g e 8 | 10

XOR, and ^

XOR is the last operator in Java that can be used on numbers. XOR is calculated in much the same way as

OR and AND. Decimal numbers are compared on a binary level and the XOR logic is applied to each

binary column.

Application of XOR with Numbers

One interesting way that the XOR operator can be applied is for finding a single missing number in a

sequence of non-repeating numbers. For example, if provided {1,2,4,5} the XOR operator can be used to

determine that 3 is the missing number. Additionally, the sequence can be unsorted, {5,1,2,4}, so long as

there is a single number that is missing.

Figure 21 The XOR
operator accesses
the decimal number
in binary and applies
the logic gate to
each binary column.

Figure 22 This is an example of how the equation can be applied. 2 is the missing number.

Basic Logic Gates and Java

P a g e 9 | 10

This method of calculating a missing number is derived from two fundamental principles:

1. X ^ X = 0

2. There is a missing number in the array.

Since we know that performing the XOR operation on two instances of the same number will equal 0,

then we can effectively cancel out the value that would be same number. If a number is missing, then its

value will persist throughout the equation.

As an analogy, the equation can be viewed as a type of scale. The missing number

represents an imbalance on the scale. The true value of the imbalance remains

cloaked within a series of XOR operations. The final XOR calculation is when the

missing value is revealed.

 If we know a number is missing, then we can say that the true size of the array

should be n+1 or the given array plus the missing number. Iterating through the given

array and applying the XOR operator will produce a number. If no number in the

sequence is missing, then the next number that should exist in the sequence will be produced. However,

if a number is missing, then the number produced will be that missing number.

Basic Logic Gates and Java

P a g e 10 | 10

Figure 23 This is an example of how the XOR operator can be used to calculate the missing value.

