

Making Recursive Fibonacci Efficient

By: Ethan J. Nephew

Making Recursive Fibonacci Efficient

P a g e 2 | 5

Introduction

The recursive Fibonacci function doesn’t break under a larger parameter, but it does take longer

to complete the recursive stack. This paper is meant to examine why this phenomenon takes place

and how a solution can be crafted.

The Method

A recursive Fibonacci function can consist of two base

cases and a recursive call. The first base case is if the

parameter is zero. If the parameter is one, then the function

will return zero. Likewise, the second base case is if the

parameter is one – this will return one too. The last portion

of the method block will be the recursive call that will be

used to calculate the sum of the previous two Fibonacci

numbers and return them.

Lifting the Veil

Generally, how a recursive method behaves can be described in the form of a tree. The computer

is tasked with exploring each branch of the tree individually and when every branch is completely

explored, only then can the method be resolved. For the method in question to be resolved it must

reach the base case for every limb of the tree.

The above tree is a visualization of how the method behaves when seven is passed as a parameter.

Something that can be observed is that there is a lot of repeated work taking place.

7
6

5
4

3
2 1

2
3

2 1

4
3

2 1
2

5
4

3
2 1

2
3

2 1

public static long fib(long n) {

 if (n == 0)

 return 0;

 if (n == 1)

 return 1;

 else

 return fib(n - 1) + fib(n - 2);

}

Making Recursive Fibonacci Efficient

P a g e 3 | 5

The three sub-tree is calculated five separate times.

The four sub-tree is calculated three separate times.

The five sub-tree is calculated two separate times.

These sub-trees are examples of redundant work taking place. Therefore, the method is inefficient.

7
6

5
4

3
2 1

2
3

2 1

4
3

2 1
2

5
4

3
2 1

2
3

2 1

7
6

5
4

3
2 1

2
3

2 1

4
3

2 1
2

5
4

3
2 1

2
3

2 1

7
6

5
4

3
2 1

2
3

2 1

4
3

2 1
2

5
4

3
2 1

2
3

2 1

Making Recursive Fibonacci Efficient

P a g e 4 | 5

Time Complexity

This behavior can be described in terms of it’s time complexity. For every non-base case branch

base that occurs, there are two branches that must be resolved for that branch base to be resolved.

This results in a time complexity that is exponential or O(2^n). The n in the expression is the

parameter that will be passed to the method. So how many steps will a computer take to resolve

fib(50)?

2^50 = 1,125,899,906,842,624

This is a lot of work for a computer to handle. Many of these individual calculations signify a case

a redundant labor taking place. One way of reducing the time complexity of the problem is by

storing the individual base branch calculations in a quick to access data structure, such as a

HashMap.

The inclusion of the

HashMap can be viewed

as the addition of a base

case and the addition of

a storage statement. The

inclusion of this data

structure results in the

reduction of the time

complexity of the

method. By eliminating

every specific case of

redundant work that the computer must perform, calculations that would otherwise take hours, can

be accomplished in milliseconds. In this case, fib(50) can now be resolved in 99 method calls.

This process is referred to as memorization. In this case, memorization has been used to reduce an

exponential time complexity of O(2^n) to a generalized to O(2n). Changing the method from an

exponential to a linear time complexity results in a substantial gain of efficiency when a large

parameter is used.

public static Map<Long, Long> hashMap = new HashMap<>();

public static long fibMemoization(long n) {

 long fibNumber = 0;

 if (n <= 1) {

 return n;

 } else if (hashMap.containsKey(n)){

 return hashMap.get(n);

 } else {

 fibNumber = fibMemoization(n - 1) + fibMemoization(n - 2);

 hashMap.put(n, fibNumber);

 return fibNumber;

 }

}

Making Recursive Fibonacci Efficient

P a g e 5 | 5

Exploring the Behavior

This is a visualization of how fib(7) is calculated by the computer.

fib(7) -> fib(6) -> fib(5) fib(4) -> fib(3) -> fib(2)

When the stack returns up, each branch base has the necessary information stored in the

HashMap. For example, when the five node is reached, the three node will have already been

calculated.

Previously, when the five node was reached on the return stack, fib(3) would have to be

recalculated, however, it can be observed in the visualization of the memorized version of the

tree, fib(3) was already calculated and saved. This reduction in redundant labor improves the

performance of the algorithm drastically.

7
6

5
4

3
2 1

2
3

2 1

4
3

2 1
2

5
4

3
2 1

2
3

2 1

7
6

5
4

3
2 1

2
3

4
5

