Making Recursive Fibonacci Efficient

By: Ethan J. Nephew

Making Recursive Fibonacci Efficient

Introduction

The recursive Fibonacci function doesn’t break under a larger parameter, but it does take longer
to complete the recursive stack. This paper is meant to examine why this phenomenon takes place

and how a solution can be crafted.
The Method

fib(n) { A recursive Fibonacci function can consist of two base
cases and a recursive call. The first base case is if the
parameter is zero. If the parameter is one, then the function
will return zero. Likewise, the second base case is if the

parameter is one — this will return one too. The last portion

fib(n - 1) + fib(n - 2)

of the method block will be the recursive call that will be

used to calculate the sum of the previous two Fibonacci

numbers and return them.
Lifting the Veil

Generally, how a recursive method behaves can be described in the form of a tree. The computer
is tasked with exploring each branch of the tree individually and when every branch is completely
explored, only then can the method be resolved. For the method in question to be resolved it must

reach the base case for every limb of the tree.

6 Z 5
5 T 4 a——13
a3 3—12 313 219
3—2 2’1 21 21
32 21 21 21

The above tree is a visualization of how the method behaves when seven is passed as a parameter.

Something that can be observed is that there is a lot of repeated work taking place.

Page 2|5

Making Recursive Fibonacci Efficient

7
; R
5 4 3
z— 3 :3,—\'/—2 :3.—\'/—2 21
:3,4/—2 271 21 21
21

The three sub-tree is calculated five separate times.

7

- T
6
21 Iﬁ

3

The FOMBSUBREEE is calculated three separate times.

7
5
= a
3—1
11

The five sub=tree is calculated two separate times.

These sub-trees are examples of redundant work taking place. Therefore, the method is inefficient.

Page 3|5

Making Recursive Fibonacci Efficient

Time Complexity

This behavior can be described in terms of it’s time complexity. For every non-base case branch
base that occurs, there are two branches that must be resolved for that branch base to be resolved.
This results in a time complexity that is exponential or O(2*n). The n in the expression is the
parameter that will be passed to the method. So how many steps will a computer take to resolve
fib(50)?

2750 =1,125,899,906,842,624

This is a lot of work for a computer to handle. Many of these individual calculations signify a case
a redundant labor taking place. One way of reducing the time complexity of the problem is by
storing the individual base branch calculations in a quick to access data structure, such as a
HashMap.

Map<Long, Long> HashMap<>() The inclusion of the

: . HashMap can be viewed
fibMemoization(n){

fibNumber = as the addition of a base

(n<=1){ case and the addition of

n

containsKey(n)){ a storage statement. The

.get(n) inclusion of this data

structure results in the

fibNumber = fibMemoization(n - 1) + fibMemoization(n - 2)
.put(n, fibNumber)
fibNumber complexity of the

reduction of the time

method. By eliminating

every specific case of
redundant work that the computer must perform, calculations that would otherwise take hours, can
be accomplished in milliseconds. In this case, fib(50) can now be resolved in 99 method calls.

This process is referred to as memorization. In this case, memorization has been used to reduce an
exponential time complexity of O(2"n) to a generalized to O(2n). Changing the method from an
exponential to a linear time complexity results in a substantial gain of efficiency when a large

parameter is used.

Page 4|5

Making Recursive Fibonacci Efficient

Exploring the Behavior

This is a visualization of how fib(7) is calculated by the computer.

fib(7) -> fib(6) -> fib(5) fib(4) -> fib(3) -> fib(2)

When the stack returns up, each branch base has the necessary information stored in the

HashMap. For example, when the five node is reached, the three node will have already been

calculated.
6 ? 5
5 T 7 ,4_‘(_?:
4 s 3 3 2 3 2 2 1
I3 2 21 21 21
2 1

Previously, when the five node was reached on the return stack, fib(3) would have to be
recalculated, however, it can be observed in the visualization of the memorized version of the
tree, fib(3) was already calculated and saved. This reduction in redundant labor improves the
performance of the algorithm drastically.

Page 5|5

