

Comparative Analysis of Recursion and Iteration

Ethan J. Nephew

pg. 2

Documentation Analysis

The purpose of this document is to compare the system time to complete an iterative

Fibonacci sequence compared to a recursive Fibonacci sequence. Below, in Figure 1.1, is a chart

that shows the time in nanoseconds to produce the Fibonacci results. What can be observed is

that the raw time required to complete the recursive method appears to boarder on an exponential

growth pattern.

Figure 1.1 Comparative
chart of iterative and
recursive return times in
nanoseconds.

At this scale (Figure 1.1), it

can appear as though there is

no difference in time

efficiency at smaller

recursive calls. While it is

true that the ratio to resolve

the recursive method call is less significant, as shown in Figure 1.3, there is still a significant

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
an

os
ec

on
ds

Fib(x)

Return Time in Nanoseconds of Iterative and Recursive
Fibonnaci Methods (0-30)

Recursive Time Iterative Time

0

5000

10000

15000

20000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
an

os
ec

on
ds

Fib(x)

Return Time in Nanoseconds of Iterative
and Recursive Fibonnaci Methods (0-15)

Recursive Time
Iterative Time

Figure 1.2 The first 0-15 return times, this is a broken-down segment from Figure 1.1.
At Fib(9), there appears to be an example of time turbulence.

pg. 3

difference between time to return the recursive call, in comparison to the iterative method call.

The difference in return time is less stark when calculating less significant numbers in the

Fibonacci sequence. The recursive method call seems to be suspectible to what I would describe

as “time turbulence” as shown in Figure 1.2. At times my system appears to take a non-

uniformly greater amount of time for recursive Fibonacci method calls.

While it is nanoseconds, which is a relatively trivial amount of time, if we can be more

efficient, we probably

should be. At smaller

Fib(x) calls there is not

a huge difference, but

the iterative method is

many times more time

efficient than the

recursive function. In a

consecutive Fib(0) to Fib(30) sequence, the iterative method returns the result 157 times faster,

on average, compared to the recursive method. From a statistical perspective the trendline could

be described as exponential. As the program progresses higher and higher through the Fibonacci

sequence, the recursive method becomes exponentially less efficient. Why is this? The Fibonacci

sequence is by its nature a recursive sequence, so calculating it recursively would seem to be the

best solution. It sounds intuitive. It sounds logical, but this is clearly not the case.

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ra
tio

 T
im

e
to

 C
om

pl
et

e

Fib(x)

Ratio of Time Required to Return a Recursive
Method Call Compared to Iterative (0-30)

Figure 1.3 Ratio of iterative return times compared to recursive return times. The recursive
method is on average 157 times slower to return the Fibonacci number.

pg. 4

I was curious about how many methods calls it takes to complete a recursive method call.

So, I implemented a

static variable to

serve as a counter

for the recursive

method calls.

While the iterative

method needs to

only run one more

time for every

parameter increase, the recursive method will need to run many more times. One could say,

exponentially more times. I created a method that will output the number of times the recursive

Fibonacci method was used. At Fib(30), the number of recursive method calls is 2.7 million. So,

to return the answer it took 2.7 million method calls. That is a considerable amount of work and

vastly more work than the iterative method requires.

A Point of Interest

When I was looking at the amount of recursive method calls, I noticed a pattern in the

number of recursive method calls. If one were to divide a Fibonacci number by its previous

number and continue along the sequence, they will forever more precisely approach the Golden

Ratio. Interestingly, doing this begins with a degree of volatility. I made a chart to illustrate this

in Figure 3.1. It begins with volatility, but as you continue calculating the ratio it quickly

stabilizes to approximately 1.618. This is the approximation of the Golden Ratio. Now for the

fascinating part, this is what the ratio of recursive method calls looks like in Figure 3.2. The ratio

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930N
um

be
r o

f R
ec

ur
si

ve
 M

et
ho

d
Ca

lls

Fib(x)

Recursive Method Calls (1-30)

Figure 2.1 This is the raw number of times the recursive method must call itself to return the
Fibonacci number. At Fib(5) it requires 25 method calls. At Fib(20) it requires 13529 method calls.
At Fib(30) it requires 2.7 million method calls.

pg. 5

of recursive method calls approaches the Golden Ratio just as the ratio of the Fibonacci sequence

does. While it does make perfect sense that this would be the case, I think it is interesting and

cool.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Golden Ratio of the Fibonacci Sequence (1-30)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ratio of Recursive Fibonacci Method Calls (1-30)

Figure 3.1 The Golden Ratio of the Fibonacci sequence.

Figure 3.2 The ratio of recursive method calls that Java uses to calculate the next number in the
Fibonacci Sequence.

