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Documentation Analysis 

The purpose of this document is to compare the system time to complete an iterative 

Fibonacci sequence compared to a recursive Fibonacci sequence. Below, in Figure 1.1, is a chart 

that shows the time in nanoseconds to produce the Fibonacci results. What can be observed is 

that the raw time required to complete the recursive method appears to boarder on an exponential 

growth pattern.  

Figure 1.1 Comparative 
chart of iterative and 
recursive return times in 
nanoseconds. 

At this scale (Figure 1.1), it 

can appear as though there is 

no difference in time 

efficiency at smaller 

recursive calls. While it is 

true that the ratio to resolve 

the recursive method call is less significant, as shown in Figure 1.3, there is still a significant 
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Figure 1.2 The first 0-15 return times, this is a broken-down segment from Figure 1.1. 
At Fib(9), there appears to be an example of time turbulence.  
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difference between time to return the recursive call, in comparison to the iterative method call. 

The difference in return time is less stark when calculating less significant numbers in the 

Fibonacci sequence. The recursive method call seems to be suspectible to what I would describe 

as “time turbulence” as shown in Figure 1.2. At times my system appears to take a non-

uniformly greater amount of time for recursive Fibonacci method calls.  

While it is nanoseconds, which is a relatively trivial amount of time, if we can be more 

efficient, we probably 

should be. At smaller 

Fib(x) calls there is not 

a huge difference, but 

the iterative method is 

many times more time 

efficient than the 

recursive function. In a 

consecutive Fib(0) to Fib(30) sequence, the iterative method returns the result 157 times faster, 

on average, compared to the recursive method. From a statistical perspective the trendline could 

be described as exponential. As the program progresses higher and higher through the Fibonacci 

sequence, the recursive method becomes exponentially less efficient. Why is this? The Fibonacci 

sequence is by its nature a recursive sequence, so calculating it recursively would seem to be the 

best solution. It sounds intuitive. It sounds logical, but this is clearly not the case.  
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Figure 1.3 Ratio of iterative return times compared to recursive return times. The recursive 
method is on average 157 times slower to return the Fibonacci number. 
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I was curious about how many methods calls it takes to complete a recursive method call. 

So, I implemented a 

static variable to 

serve as a counter 

for the recursive 

method calls.  

While the iterative 

method needs to 

only run one more 

time for every 

parameter increase, the recursive method will need to run many more times. One could say, 

exponentially more times. I created a method that will output the number of times the recursive 

Fibonacci method was used. At Fib(30), the number of recursive method calls is 2.7 million. So, 

to return the answer it took 2.7 million method calls. That is a considerable amount of work and 

vastly more work than the iterative method requires. 

A Point of Interest 

When I was looking at the amount of recursive method calls, I noticed a pattern in the 

number of recursive method calls. If one were to divide a Fibonacci number by its previous 

number and continue along the sequence, they will forever more precisely approach the Golden 

Ratio. Interestingly, doing this begins with a degree of volatility. I made a chart to illustrate this 

in Figure 3.1. It begins with volatility, but as you continue calculating the ratio it quickly 

stabilizes to approximately 1.618. This is the approximation of the Golden Ratio. Now for the 

fascinating part, this is what the ratio of recursive method calls looks like in Figure 3.2. The ratio 
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Figure 2.1 This is the raw number of times the recursive method must call itself to return the 
Fibonacci number. At Fib(5) it requires 25 method calls. At Fib(20) it requires 13529 method calls. 
At Fib(30) it requires 2.7 million method calls.  
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of recursive method calls approaches the Golden Ratio just as the ratio of the Fibonacci sequence 

does. While it does make perfect sense that this would be the case, I think it is interesting and 

cool.  
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Figure 3.1 The Golden Ratio of the Fibonacci sequence. 

Figure 3.2 The ratio of recursive method calls that Java uses to calculate the next number in the 
Fibonacci Sequence. 


