Comparative Analysis of Recursion and Iteration

Ethan J. Nephew



Documentation Analysis

The purpose of this document is to compare the system time to complete an iterative
Fibonacci sequence compared to a recursive Fibonacci sequence. Below, in Figure 1.1, is a chart
that shows the time in nanoseconds to produce the Fibonacci results. What can be observed is
that the raw time required to complete the recursive method appears to boarder on an exponential

growth pattern.

Return Time in Nanoseconds of Iterative and Recursive
Fibonnaci Methods (0-30)
4500000
4000000
3500000
3000000
2500000
2000000

v
T
c
=]
O
Q
v
o
c
@
=

1000000
10/0[0]0]0)

0
0 1 2 3 45 6 7 8 9 10111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Recursive Time Iterative Time Fib(x)

Figure 1.1 Comparative
chart of iterative and
recursive return times in
nanoseconds.

Return Time in Nanoseconds of Iterative
and Recursive Fibonnaci Methods (0-15)

At this scale (Figure 1.1), it

can appear as though there is

)
°
=
=]
o
[}
w
=]
=
[}
r-

no difference in time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Recursive Time Fib(x)

efficiency at smaller ———

recursive calls. While it is Figure 1.2 The first 0-15 return times, this is a broken-down segment from Figure 1.1.
At Fib(9), there appears to be an example of time turbulence.

true that the ratio to resolve

the recursive method call is less significant, as shown in Figure 1.3, there is still a significant

pg. 2



difference between time to return the recursive call, in comparison to the iterative method call.
The difference in return time is less stark when calculating less significant numbers in the
Fibonacci sequence. The recursive method call seems to be suspectible to what I would describe
as “time turbulence” as shown in Figure 1.2. At times my system appears to take a non-

uniformly greater amount of time for recursive Fibonacci method calls.

While it is nanoseconds, which is a relatively trivial amount of time, if we can be more

efficient, we probably Ratio of Time Required to Return a Recursive

should be. At smaller Method Call Compared to Iterative (0-30)

Fib(x) calls there is not
a huge difference, but

the iterative method is

()
-
Q

Qo

=

(o}
o

[}
-

(]
E
=
0
=}

©
4

many times more time
8 10 12 14 16 18 20 22 24 26 28 30

efficient than the Fib(x)

Figure 1.3 Ratio of iterative return times compared to recursive return times. The recursive
recursive function. Ina method is on average 157 times slower to return the Fibonacci number.

consecutive Fib(0) to Fib(30) sequence, the iterative method returns the result 157 times faster,
on average, compared to the recursive method. From a statistical perspective the trendline could
be described as exponential. As the program progresses higher and higher through the Fibonacci
sequence, the recursive method becomes exponentially less efficient. Why is this? The Fibonacci
sequence is by its nature a recursive sequence, so calculating it recursively would seem to be the

best solution. It sounds intuitive. It sounds logical, but this is clearly not the case.

pg. 3



I was curious about how many methods calls it takes to complete a recursive method call.

So, I implemented a Recursive Method Calls (1-30)

) ) 3000000
static variable to
2500000

serve as a counter 2000000

. 1500000
for the recursive

1000000

method calls. 500000

While the iterative 0

c_n
=
(O]
©
]
=
Lo
[}
s
(]
2
(7]
S
=
(8]
[T}
o
S
(]
S
[}
el
£
=}
2

1234567 8 9101112131415161718192021222324252627282930

method needs to Fib(x)

Figure 2.1 This is the raw number of times the recursive method must call itself to return the
Fibonacci number. At Fib(5) it requires 25 method calls. At Fib(20) it requires 13529 method calls.
At Fib(30) it requires 2.7 million method calls.

only run one more
time for every
parameter increase, the recursive method will need to run many more times. One could say,
exponentially more times. I created a method that will output the number of times the recursive
Fibonacci method was used. At Fib(30), the number of recursive method calls is 2.7 million. So,
to return the answer it took 2.7 million method calls. That is a considerable amount of work and

vastly more work than the iterative method requires.

A Point of Interest

When I was looking at the amount of recursive method calls, I noticed a pattern in the
number of recursive method calls. If one were to divide a Fibonacci number by its previous
number and continue along the sequence, they will forever more precisely approach the Golden
Ratio. Interestingly, doing this begins with a degree of volatility. I made a chart to illustrate this
in Figure 3.1. It begins with volatility, but as you continue calculating the ratio it quickly
stabilizes to approximately 1.618. This is the approximation of the Golden Ratio. Now for the

fascinating part, this is what the ratio of recursive method calls looks like in Figure 3.2. The ratio

pg. 4



of recursive method calls approaches the Golden Ratio just as the ratio of the Fibonacci sequence
does. While it does make perfect sense that this would be the case, I think it is interesting and

cool.

Golden Ratio of the Fibonacci Sequence (1-30)

123456 7 8 9101112131415161718192021222324252627282930

Figure 3.1 The Golden Ratio of the Fibonacci sequence.

Ratio of Recursive Fibonacci Method Calls (1-30)

123456 7 8 9101112131415161718192021222324252627282930

Figure 3.2 The ratio of recursive method calls that Java uses to calculate the next number in the
Fibonacci Sequence.

pg. 5



