VisualVM 8’

Dynamic Profiling

By: Ethan J. Nephew

DYNAMICPROFILING

Program Overview

The program that [will be profiling is my JavaFX client server currency converter program that [

developed last summer. The program is not complete, but it is entirely functional as it is. The user

of the program is presented with 2 Java programs but has a total of 3 unique windows.

Server Interface

@ Server Interface — x The first window is the

Curren::y Chart request received. & Sever Interface‘ ThlS

Connection has been closed.
Waiting for client connection...
Currency Chart request received.

window represents the

Connection has been closed. server side of the
Waiting for client connection... X i .
Currency Chart request received. apphcatlon, and it
Connection has been closed.

Waiting for client connection... communicates with the

client side of the

Figure 1 Server Interface. Displays useful information related to client-server interactivity.

The white space on the right is used for setting start-up configerations. apphcatlon.

Currency Converter Interface

The other window 1is the

. Currency Converter

Currency Converter window.
This window is used for
requesting and displaying

useful information related to

-
currency conversions. The

user can comparc any two of S0 UED » 159A6702855C00

fifty-four currencies. The
user can also up the historical

Chart Data window that will

display currency conversion
Figure 2 Currency Conversion interface that is used to receive user data and display

rates over the past couple years. useful information to the user.

ETHAN NEPHEW

DYNAMICPROFILING

Historical Data Chart Interface

Figure 3 Chart that

Rate of Change

. Historical Data

E up B (A
id O aw m () BGN
w [/BND & ()BRL
I+] C)cap BB () cHF
B oy m ®cor
= ook HOOER
CHko BB HRK
= [bR E IS
—

CHILHE F Il wi

O cop

M wa
SO
> o
P e
© @
L
®

@ Historical Data

E (am

Exchange Rate

O cop

Figure 4 Chart that displays the historical rate of change. USD is selected as the base currency for comparison.

The Chart Data button on the Currency Converter interface from Figure 2 opens a new window

that is used to graph historical data from October of 2018 to October of 2021. On the lower left-

ETHAN NEPHEW

DYNAMICPROFILING

hand corner of the Historical Data window, there is an option to use either Exchange Rate or Rate

of Change. The exchange rate, in figure 3, is the raw conversion rate between currencies. The rate

of change, in figure 4, is useful for determining the volatility of a given currency.

Currency Conversion Visual VM

The heap performance for the client side of the application has a relatively low profile. It remains

within the 20-45 MB range, which is respectable. It can also be determined here that a memory

leak probably does not exist in this component of the application.

Heap Metaspace

Stre: 52,420, 8028 Used: 12,621, 8008
Max: 1,595,932.696 8

I S ——
i v

o v

N s

2:20 b 230 ™ A0 O™ 250

.
300 P L300

B resp sze [l Used hesp

Figure 5 When the Currency Conversion interface is running it appears that there is a sort of memory leak taking place, but |
believe this is just responsible garbage collection taking place. This is the profile that is produced when the application is

running, but little to no interaction is taking place.

StwtPage X | s O Server ServerMon (e 10296) X | & CC_Drectory Main (i 9012 X
[overvew Mot = thveads [Seoper (O Profier

= OC_Directory. Main (pid 4012)

Srioe

Profde Oou anml {3 xec = teda e
Statue profieg runeing (3,538 cdasses nstrumented)

Profing rests
Resity o Q :o‘ olected data: (5] Snepshet §O
Narre Lim Bytes Lve Otpects Noceted Otyects Gereratons

L I ferver CarrencyChartOby

+ (4 OC_Server CarrencyDataOby L L 2 s 2 o 1

Figure 6 Something interesting
is that on the client side, when
requesting and receiving data
objects, it instantiated two of
each type. The overall size of
the objects remains consistent
throughout the program.

ETHAN NEPHEW n

DYNAMICPROFILING

Server Interface Visual VM

Heap | Metaspace x

Stze: 80,740,304 8 Used: 37,236 7928
Max: 1.595.902.656 8

v . - - - - . - -

o . &) e & fohd P §AT P 4w

Hl Meap sz [l Used heap

Figure 7 Heap size on the server side can be more turbulent. | think this can be mostly attributed to my use of profiling. The
peaks in the graph occurred when | engaged memory profiling. From 5:42 — 5:45 js what could be described as normal
operating behavior. Server requests can result in fluctuations in the heap size.

Frofirg res it PUsetings | Besary sefings | DBC semngs

memite () T3 [| Colecs ot [St ——

Figure 8 Profiling the memory for the data objects on the server side demonstrates that both currency conversion objects and
currency data objects use 32B of space. To complete a request for a specific type only requires a single object to be instantiated.
This is a good use of data objects.

From viewing the heap of the server side of the application it can be observed that there is a similar
garbage collection trend occuring on this side too. It might be the case that this is a normal JavaFX
behavior or that it is the result of VisualVM monitoring a JavaFX application. The screenshot of
the heap was taken after engaging in CPU and memory profiling. It can be observed that profiling
does significantly increase the required heap size. In terms of user performance, profiling does
noticiably reduce response time. The application’s response time is noticably slower compared to
when profiling is not being implemented. When I was creating this program, I prioritized the quick
transfer and depiction of data. It was my goal that the data being transferred from the sever to the
client interface would be close to an instant process. As a result, when it takes .15 more seconds,

due to VisualVM, it is noticiable.

ETHAN NEPHEW

DYNAMICPROFILING

The Use of Dynamic Profiling

CPU =

CPU usage: 0.0% GC activity: 0.0%

100% 1

B4

N AP | .,

545 PM 5:50 PM 555 PM 6:00 PM 605 PM £10 PM
@ CPU usage M GC activity

Figure 9 This is the CPU activity on the server side of the application.

CPU usage: 0.0% GC activity: 0.0%
100% 1

S0%%

20%

10%a 4

5:55 PM £:00 PM £:05 PM S10 PM
E CPU usage [GC activity

0% =

Figure 10 This is the CPU activity on the client side of the application.

CPU activity will vary depending on the system. My computer has 4 CPUs at 2.6 GHz. The last
measurements of CPU activity that occurred after 6:10 are the results of serving up chart data.
What can be observed is that retrieving the historical charting dataisn’t particularly CPU intensive

compared to what it takes to display that information into a JavaFX chart. I found this to be

ETHAN NEPHEW n

DYNAMICPROFILING

particularly surprising. Some of the calculations will be handled database
side, because my queries for retrieving this information are rather complex.
It could be the case that Visual VM is not measuring the cost of conducting
database transactions, because the complex query transactions could be

occurring outside of the Java virtual machine.

How a data chart object is converted into a chart is through a simple loop.
The client side loops through the data chart object and displays each point
chronologically. In my opinion, this shouldn’t require 40% of my

processor’s capacity in order to achieve this.

| |

Figure 11 JavaFX Chart can
require up to 40% of the
CPU to chart a chart data
object.

To see if I could reduce CPU usage, I tried reverse the order by which
elements were added to the chart. This produced a reverse ordered
chart but required slightly more CPU capacity. I spent some more time

experimenting with how elements are added to the chart, but nothing

1N seemed to improve CPU performance. I spent some time investigating

Figure 12 Changing the way performance related mistakes against JavaFX charts. 1 found a

elements are added to the chart
produced no positive
performance on CPU usage.

inefficient, so I decided to try disabling them.

To my surprise, disabling the
chart lines reduced the CPU load
by nearly 15%. This is a signi ficant Figure 13 Disabled the gridlines in the chart.
decrease in my JavaFX charting resource usage. Without gridlines,
it is slightly more difficult toread the chart. Ifthis was a real project,
there would probably be a debate about whether this is efficiency

gain is worth decreasing the charts overall readability. However,

Figure 14 CPU usage has
almost a 15% decrease
afterdisabling gridlines
in the chart.

comment where someone was asking why the chart gridlines were

DYNAMICPROFILING

this highlights how Visual VM can be used to improve the performance of an application.

@ Historical Data o X
=) -
= uso B (aD = ARS D
@ a0 m gen ¥) BHD Jon
w (1BND B (UBRL = (WP 3950
|| ()cap 1 cHF B (P =
3850
CNY mm @) COP w0 CZK s

pkk W EUR

TR

L GBP 3750

Figure 15 This is how the charting is depicted after removing the lines from the chart. Is the performance gain worth it? Is the
readability of the chart significantly decreased? That is something that could be debated.

Closing Statement

Dynamic profiling is used for analyzing programs with precision. It is used to measure memory
usage, CPU requirements, method frequency and duration, and object usage. Often programs
perform many tasks that produce observable results, but the innerworkings are more difficult to
observes. Dynamic profiling is useful for demystifying how a program performs on a system. In
my implementation I discovered that populating the JavaFX chart was causing a spike of 40% of
the processor capacity on my laptop. It would only do this for a moment, but if my system was
already using a significant portion of my processors capabilities, then this could result in the
application having problems populating the chart. Absent VisualVM, I probably would have never
placed this aspect of my program under such scrutiny. Over hours of tinkering with it I discovered

that disabling the gridlines significantly decreased the processor intensity of this component.

ETHAN NEPHEW n

