AWS Approach for Testing a Distributed System

Ethan J. Nephew

Scenario

The scenario that will be broadly addressed is how to test a massively multiplayer online game (wikipedia,
2021). The MMO will need to be accessible over different geographical locations. Due to the
decentralization of the user-base a distributed system is fitting for this scenario (Gibb, 2019). Considering
the international nature of the example entity, it must comply with regional laws and regulations. Customer
service would be email oriented. It is highly probable that the customer base will be diverse in spoken
language, so using text translation services will be beneficial in breaking down language barriers. From a
user standpoint, the specifications of the MMO/game will remain lenient.

The users will connect to the game through geographical servers. Geographical servers will be strategically
located based on the anticipated size of the user-base. The anticipated size would likely be discovered
through market research. The user portals would connect to their region-specific server in order to send and
receive necessary system specific information. Each region server will connect to what could be described
as a centralized server system that will facilitate the management, transfer, and storage of global variables.

In this context, what is a server? In the wider sense a server could mean a common locality of devices that
host services. Each server is not a singular machine. For example, the Eastern South American Server could
consist of dozens of different computers, and each will be running a single service that is providing data to
multiple users and/or to other services on other machines. To the user, it will appear as though all services
are operating as a singular entity. An approach to determining what type of service should be run by a
specific service machine and where the location of that service machine needs to be is by latency
requirements. For a service that requires faster results, it will make sense for that service to operate on a
machine that is geographically closer to its targeted user cluster(s).

Emphasis on Testing

At the beginning of development, testing and the development of test infrastructure should be taking
place. Regular industry testing practices will take place, such as development testing and quality
assurance testing. This isn’t to say that the development process needs to be strictly test-driven, but rather
testing needs to be part of the process from the beginning. Developers should be writing thorough unit
tests and integration tests. Additionally, it is important to have assertion statements embedded inside the
code. Assertion statements can be enforced by running code with the assertions on (stackoverflow, 2019).

Specification Abstraction as a Concept Test

During design, a misstep is a lack of specifications for a

distributed system. While testing should take place at the code 5o o e e
level, it should also take place on the design level itself. Some oo B (s 2 (7nesmi
problems that distributed systems face are obscured by details ovoros 1 %eroness 174691 6333030
that can vary _greatly in_ rel_evance regz_arding s_olution o e B L
development. During the engineering process, jumping into the cosos 7 sseN163 10269969 3985579
minefield of details can be a strong temptation, but the o ey e e
minefield can distract or confuse us of the overall design of a Do 103 YL R
system (Lamport, Teaching Concurrency, 2009). 000002 o 1 P P

It is also easy to feel that if the implementation is not being
directly addressed, then time is being wasted. However, we will
always struggle to implement systems that we find difficult to __~ = = = o

. . . g a simple username authentication
understand at a higher level. Understanding the problem is ., css during concurrent operation. A minor bug
addressing the problem. Learning how to approach gaining can have a major manifestation. Note: The model
comprehension of a system is a difficult task, because it can was ended before completion.
appear anti-thetically to our learned development processes. At

Figure 1 A simple model produced in TLA+ that
shows the high degree of distinct states that can

ETHAN NEPHEW 2

face value, it should be easy to understand how a detail-oriented approach to grand problems can result in
the inclusion of unnecessary details. One tool that can be used to achieve a greater understanding of systems
is TLA+ (Lamport, Industrial Use of TLA+, 2018).

In Figure 1, it is worth pondering what it would take for every state that was reached using the TLA+
Toolbox for 10 minutes to instead be reached during development, a test scenario, or product release. In
traditional development, there are a potentially infinite number of unique states that might never be
anticipated or reached. Formal methods are about getting developers to begin thinking about those unique
and more difficult to reach states. TLA+ can be used to convert a programming language algorithm into a
mathematical expression (wikipedia, 2021). In the TLA+ Toolbox, invariants can be specified in the Model
Overview and the model can be run using TLC. If an invariant is violated, then the distinct states that lead
to that violation will be displayed. Testing all execution paths is something that the TLA+ Toolbox can do.

Invariant lIdentification and Assertion

In software systems we usually test specific things. ‘ ‘ e

. . As | said, | use assertions to make sure that complicated invariants are
Unit tests WI“ genera"y test that mEthOd(S) maintained. If invariants are corrupted, | want to know the instant it
produce the correct outputs, given the specified happens; | want to know what set of actions caused the corruption to take
inputs. In distributed systems, something that can ~ P** . _
be difficult to identify without the use of TLA+ is g g’ggf‘-’ 2 Q“Otefm’;’ofos”“"?’“h mchers at Work (Seibel,
discovering different types of invariants conn)o{crr(;irgnp(zgt’ﬁ ihis‘c?u‘//‘:z’rfen Zsr:':p/;gedasv:nati:neegni“}/:variants
'EE?C?]Steig,bzotl&l Itnvarlanf[fs_, gei[niarally,lflr? ihln?: are bad if they remain unidentified.

at should be true at a specific state or all states.

state can be understood as the facts surrounding a particular area after an execution. When we introduce
concurrency to a program, even simple things can easily become a seemingly bottomless pit of unique
states. The identified invariants should have their properties be asserted as true in key locations in the non-
critical program execution path.

Test Case Generation

While engaging in property testing, the focus should move away from specific test cases and towards the
testing of properties. Properties can be tested thoroughly by using generative testing (Normington, 2019).
Generative testing involves the creation of a test case generator. The generator needs to have parameters
possible parameters specified. The generator then creates the tests. A useful aspect of generative testing is
that implementing random test cases during generation is feasible.

Integration Testing of Distributed Algorithms

There must be a way to discover bugs that are revealed during stressful or semi-stressful circumstances,
such as multiple processes being operated simultaneously. Using what Tim Rath refers to as ‘in process
clusters’ (Rath, 2015), can be an effective method for discovering the described bug. IBM has a cluster
testing tool that has a useful overview that can help gain a broad idea of what cluster testing looks like.

The goal of in process clusters is to have the ability to isolate certain clusters of a process and test those
specific clusters. This allows for the creation of test scenarios that would otherwise be very difficult to
create.

Downsides

Some of the significant downsides to this approach is finding qualified individuals. TLA+ is not a popular
technology, so education will likely be required. TLA+ is not particularly friendly towards new users.
However, there are some useful tutorials made by Leslie Lamport (Lamport, Learning TLA+, 2019).

ETHAN NEPHEW 3

References
Gibb, R. (2019, July 26). What is a Distributed System? Retrieved from stackpath.com:
https://blog.stackpath.com/distributed-system/

Hochstein, L. (2018, December 27). https://surfingcomplexity.blog/2018/12/27/inductive-invariants/.
Retrieved from surfingcomplexity.blog: https://surfingcomplexity.blog/2018/12/27/inductive-
invariants/

Lamport, L. (2009, November 30). Teaching Concurrency. Retrieved from microsoft.com:
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Teaching-Concurrency.pdf

Lamport, L. (2018, December 4). Industrial Use of TLA+. Retrieved from lamport.azurewebsites.net:
https://lamport.azurewebsites.net/tla/industrial-use.html

Lamport, L. (2019, August 19). Learning TLA+. Retrieved from lamport.azurewebsites.net:
https://lamport.azurewebsites.net/tla/learning.html

Normington, J. (2019, January 18). A smarter way to QA: introducing generative testing. Retrieved from
medium.com: https://medium.com/geckoboard-under-the-hood/how-generative-testing-
changed-the-way-we-qa-geckoboard-b4a48a193449

Rath, T. (2015, February 21). The Evolution of Testing Methodology at AWS: From Status Quo to Formal
Methods with TLA+. Retrieved from infog.com: https://www.infoq.com/presentations/aws-
testing-tla/

Seibel, P. (2009). Coders at Work: Reflections on the Craft of Programming. In P. Seibel. Apress.
Retrieved from https://github.com/ndina/acm/blob/master/coders-at-work.pdf

stackoverflow. (2019). How to enable the Java keyword assert in Eclipse program-wise? Retrieved from
stackoverflow.com: https://stackoverflow.com/questions/11415160/how-to-enable-the-java-
keyword-assert-in-eclipse-program-wise

wikipedia. (2021, November 7). Massively multiplayer online game. Retrieved from wikipedia.org:
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game

wikipedia. (2021, September 16). TLA+. Retrieved from wikipedia.org:
https://en.wikipedia.org/wiki/TLA%2B#:~:text=TLA%2B%20is%20a%20formal%20specification,c
oncurrent%20systems%20and%20distributed%20systems.&text=TLA%2B%20is%20als0%20used
%20to,for%20algorithms%20and%20mathematical%20theorems.

ETHAN NEPHEW 4

